- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Dey, Sheelabhadra (1)
-
Durand, Frédo (1)
-
Li, Yukun (1)
-
Liu, Li-Ping (1)
-
Sharon, Guni (1)
-
Sitzmann, Vincent (1)
-
Smith, Cameron (1)
-
Tenenbaum, Joshua B. (1)
-
Wu, Jiajun (1)
-
Yu, Hong-Xing (1)
-
Zakharov, Sergey (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
Kamath, Gautam (3)
-
Larochelle, Hugo (3)
-
Murray, Naila (2)
-
Shah, Nihar B (2)
-
Cho, Kyunghyun (1)
-
Hadsell, Raia (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Larochelle, Hugo; Murray, Naila; Kamath, Gautam; Shah, Nihar B (Ed.)Gaussian Mixture Models (GMMs) have been recently proposed for approximating actors in actor-critic reinforcement learning algorithms. Such GMM-based actors are commonly optimized using stochastic policy gradients along with an entropy maximization objective. In contrast to previous work, we define and study deterministic policy gradients for optimiz- ing GMM-based actors. Similar to stochastic gradient approaches, our proposed method, denoted Gaussian Mixture Deterministic Policy Gradient (Gamid-PG), encourages policy entropy maximization. To this end, we define the GMM entropy gradient using Varia- tional Approximation of the KL-divergence between the GMM’s component Gaussians. We compare Gamid-PG with common stochastic policy gradient methods on benchmark dense- reward MuJoCo tasks and sparse-reward Fetch tasks. We observe that Gamid-PG outper- forms stochastic gradient-based methods in 3/6 MuJoCo tasks while performing similarly on the remaining 3 tasks. In the Fetch tasks, Gamid-PG outperforms single-actor determinis- tic gradient-based methods while performing worse than stochastic policy gradient methods. Consequently, we conclude that GMMs optimized using deterministic policy gradients (1) should be favorably considered over stochastic gradients in dense-reward continuous control tasks, and (2) improve upon single-actor deterministic gradients.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Li, Yukun; Liu, Li-Ping (, Transactions on machine learning research)Larochelle, Hugo; Murray, Naila; Kamath, Gautam; Shah, Nihar B (Ed.)
-
Smith, Cameron; Yu, Hong-Xing; Zakharov, Sergey; Durand, Frédo; Tenenbaum, Joshua B.; Wu, Jiajun; Sitzmann, Vincent (, Transactions on machine learning research)Larochelle, Hugo; Kamath, Gautam; Hadsell, Raia; Cho, Kyunghyun (Ed.)Neural scene representations, both continuous and discrete, have recently emerged as a powerful new paradigm for 3D scene understanding. Recent efforts have tackled unsupervised discovery of object-centric neural scene representations. However, the high cost of ray-marching, exacerbated by the fact that each object representation has to be ray-marched separately, leads to insufficiently sampled radiance fields and thus, noisy renderings, poor framerates, and high memory and time complexity during training and rendering. Here, we propose to represent objects in an object-centric, compositional scene representation as light fields. We propose a novel light field compositor module that enables reconstructing the global light field from a set of object-centric light fields. Dubbed Compositional Object Light Fields (COLF), our method enables unsupervised learning of object-centric neural scene representations, state-of-the-art reconstruction and novel view synthesis performance on standard datasets, and rendering and training speeds at orders of magnitude faster than existing 3D approaches.more » « less
An official website of the United States government

Full Text Available